

PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE
 (AUTONOMOUS)

II B.TECH I SEMESTER END REGULAR/SUPPLEMENTARY EXAMINATIONS, JAN - 2023 ELECTRICAL CIRCUIT ANALYSIS
(EEE Branch)
Time: 3 hours
Max. Marks: 60
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A $(5 \times 2=10 \mathrm{M})$

Q.No.	Questions	Marks	CO	KL	
1	a)	State Thevenin's theorem.	$[2 \mathrm{M}]$	1	1
	b)	At a particular instant, the R phase voltage of a balanced three phase system is 40 V, and Y phase voltage is -80 V . What will be the voltage of B phase at that instant?	$[2 \mathrm{M}]$	2	1
	c)	Write the properties of series resonance	$[2 \mathrm{M}]$	3	1
	d)	What is reciprocal condition of ABCD Parameters?	$[2 \mathrm{M}]$	4	1
	e)	How do you form tree and co-tree in the network topology?	$[2 \mathrm{M}]$	5	1

PART-B
Answer One Question from each UNIT (5X10=50M)

Q.No.	Questions	Marks	CO	KL
UNIT-I				
2.	Using mesh analysis, find the current flow through the 50 V source in the network of figure - 1 Figure - 1	[10M]	1	3
OR				
3.	State compensation theorem. In the network shown in below figure-2, the 2 ohm resister is changed to 8 ohm. Determine the resulting change in current through the $(3+\mathrm{j} 4)$ ohm impedance branch using compensation theorem. Figure -2	[10M]	1	1

UNIT-II

4.	a)	Draw phasor diagram of currents for a balanced delta-connected supply system and Establish relation between line currents and phase currents	[5M]	2	2
	b)	A balanced 3- phase, 3-wire $50 \mathrm{~Hz}, 220 \mathrm{~V}$ supply is given to a load consisting of three impedances each of $(3+\mathrm{j} 4)$ ohms connected in star. Determine the line and phase voltages and also currents.	[5M]	2	2
OR					
5.		The unbalanced star connected load shown in Figure -3 has balanced voltages of 100 V with abc sequence. Calculate the line currents and neutral currents. Take $\mathrm{Z}_{\mathrm{A}}=15 \mathrm{Ohm}, \mathrm{Z}_{\mathrm{B}}=(10+\mathrm{j} 5) \mathrm{Ohm}, \mathrm{Z}_{\mathrm{C}}=(6-\mathrm{j} 8) \mathrm{Ohm}$. Figure - 3	[10M]	2	3
UNIT-III					
6.	a)	What is Coefficient of Coupling and derive an expression for the Coefficient of Coupling ' k '	[5M]	3	2
	b)	Compare series resonance with parallel resonance.	[5M]	3	2
OR					
7.		Find the voltage across the capacitor shown in Figure -4 using Laplace transform. Verify with time domain analysis. Figure -4	[10M]	3	3
UNIT-IV					
8.		Obtain the Z- parameters and ABCD parameters of the circuit shown in Figure-5. Figure - 5	[10M]	4	3
OR					

9.		For the network shown in Figure -6 below find hybrid parameters(the dependent source is of $\boldsymbol{\alpha} \mathbf{I}_{\mathbf{1}}$) Figure - 6	[10M]	4	3
UNIT-V					
10.	a)	Define the Basic cut set and tie set matrices for planar networks	[5M]	5	2
	b)	Draw the graph of the network shown in Figure - 7 and write down the tieset Matrix Figure-7	[5M]	5	2
OR					
11.		Find out currents through and voltages across all branches of the network shown in figure - 8, with the help of tie-set schedule. Figure - 8	[10M]	5	3

